
class: center, middle

.byline[Will Billingsley, CC-BY]

class: bigquote

1 plus 1 equals 2

red plus green equals yellow

1 plus red

class: bigquote

red plus rabbit

class: bigquote

red plus rabbit equals a red rabbit

class: bigquote

Types

Do these makes sense...

What about...

What about...

What about...

rabbit plus rabbit

class: bigquote

rabbit plus rabbit equals lots of baby rabbits

class: bigquote

1 plus 1 equals 2

1 apple plus 1 orange

a plus b

class: bigquote, middle

class: bigquote, middle

\(3 V \times (\frac{12 V}{6 \Omega} + 2 A) \)

class: bigquote, middle

\(3 V \times (\frac{12 V}{6 \frac{V}{A} } + 2 A) \)

class: bigquote, middle

\(3 V \times (\frac{12 (V \times A)}{6 V} + 2 A) \)

class: bigquote, middle

\(3 V \times (\frac{12}{6} A + 2 A) \)

What about...

Back to numbers

Let's do something a little engineering

class: bigquote, middle

\(3 V \times (\frac{12}{6} A + 2 A) \)

class: bigquote, middle

\(3 V \times (2 A + 2 A) \)

class: bigquote, middle

\(3 V \times 4 A \)

class: bigquote, middle

\(3 \times 4 (V \times A) \)

class: bigquote, middle

\(12 (V \times A) \)

class: bigquote, middle

\(12 W \)

Just as we can simplify an equation of values, we can also simplify an equation of types

Formally, this is called type theory. And it is closely related to automated theorem proving -- getting a
computer to prove the proposition that "this expression is the right type".

In practice, there is a very close link between programs and proofs -- computer proofs look like
programs. Curry-Howard correspondance.

The message here...

Different type systems

When do we check the types?

compile time? "Static typing"
run time? "Dynamic typing"

What do we do if we find the type is incompatible?

throw an error? "Strong typing"
fudge it somehow? "Weak typing"

What should these resolve to?

if (3 ^ "apples" == 4 ^ "oranges") { console.log("Yes, it does!") }

a == !!a

17 + ("apples" != "oranges") + "foo"

If I'm right, I want my code to run happily...

If I'm wrong, I want to know I'm wrong now, not in production

Fixing a bug in production costs 10 times as much as before I've released it

Lets us express every program we want

Stops us from expressing every program we obviously didn't want

But isn't this verbose?

Weak typing in JavaScript

A successful checker

A successful checker

Map<Student, List<Course>> courseMap = new HashMap<Student, List<Course>>();

courseMap = {}

Let's keep the benefits of static typing (finding errors sooner, tool support, eg, auto-completion in IDEs)

But lose some of the verbosity.

What type are these?

 val a = 127

 val b = "Hello world"

 val b = List("one", "two", "three").head

Type inference -- so easy, you can do it already!

Sometimes it needs some help

def factorialStep(soFar:Long, thisNum:Int) = {
 if (thisNum == 1) {
 soFar
 } else {
 factorialStep(thisNum * soFar, thisNum - 1)
 }
}

Type inference

Type inference gotchas

[error] /Users/wbilling/sourcecode/teaching/cosc250/firstscala/src/main/scala/
cosc250/firststeps/StepOne.scala:63: recursive method factorialStep needs resu
lt type
[error] factorialStep(thisNum * soFar, thisNum - 1)
[error] ^

Sometimes it needs some help

def factorialStep(soFar:Long, thisNum:Int):Long = {
 if (thisNum == 1) {
 soFar
 } else {
 factorialStep(thisNum * soFar, thisNum - 1)
 }
}

Sometimes it can be too narrow

trait ContentItem {
def copyrightHolder = None
}

class Book(val title:String, val author:String) extends ContentItem {
override def copyrightHolder = author
}

Expression of type Some[String] does not conform to expected type None.type

In one JAR we might have

public interface HasId {
 String getId();
}

Type inference gotchas

Type inference gotchas

Inheritance and types

and in another JAR entirely we might have

public class Foo extends HasId {

 String id;

 @Override
 public String getId() {
 return this.id;
 }
}

public class User {
 public String getId() {
 return this.id;
 }
}

Subtypes represent an "is a" relationship

Is it a HasId ?

Java uses Nominal subtyping for inheritance -- classes decare the contracts they conform to

But what about this

Structural subtyping

object Demo {

 type HasId = {
 def getId:String
 }

 class Book(val title:String, val author:String) {
 def getId = ""
 }

 val a: HasId = new Book("a", "b")
}

Common in Haskell, fairly common in Scala.

Are these Openable?

A can
A beer bottle
A wine bottle (with a cork)

Common in Haskell, fairly common in Scala.

Are these Openable?

A can -- only if I've got a can opener!
A beer bottle -- only if I've got a bottle opener!
A wine bottle -- only if I've got a corkscrew!

A trait for the evidence

trait Openable[A] {
 def open(a:A): String
}

Ad-hoc polymorphism (typeclasses)

Ad-hoc polymorphism (typeclasses)

Ad-hoc subtyping (typeclasses)

A wine bottle

class Wine(val name:String)

A function, needing something openable

def pour[A](item: A)(implicit ev: Openable[A]) = {
 val contents = ev.open(item)
 println(contents)
 contents
}

Let's call it

val w = new Wine("Beaujolais") // we need a second parameter!

Let's provide the corkscrew

public object Wine {
 implicit object Corkscrew extends Openable[Wine] {
 def open(w:Wine) = "Lovely " + w.name
 }
}

A function, needing something openable

def pour[A](item: A)(implicit ev: Openable[A]) = {
 val contents = ev.open(item)
 println(contents)
 contents
}

Ad-hoc subtyping (typeclasses)

Syntactic sugar

def pour[A : Openable](item: A) = {
 val opener = implicitly[Openable[A]]
 val contents = opener.open(item)
 println(contents)
 contents
}

In Java, called Generics

In Scala, you just saw them

List[String]

Openable[A]

etc

If a Student is a Person , is a List[Student] a List[Person] ?

import scala.collection.mutable

trait Person
object Bob extends Person
class Student(n:String) extends Person

def addBob(seq:mutable.Buffer[Person]) = {
 seq.append(Bob)
}

val a = mutable.Buffer(new Student("Fred"), new Student("Alice"))

addBob(a)

class Container[+A]

Parametrized Types

Parametrized Types and Subtyping

Covariance and Contravariance

if Y is a subtype of X , Container[Y] is a subtype of Container[X]

class Container[-A]

if Y is a subtype of X , Container[X] is a subtype of Container[Y]

class Container[A]

Container[Y] and Container[X] are unrelated

This is fairly common:

class Container[-A, +B]

Scala can do implicit conversions that let you decorate classes

eg, locally make it seem like you've added methods to someone else's library

It also has a convention where

obj.callMyFunc(param)

can also be written

obj callMyFunc param

Let's make "one" plus "one" equals "two"

A bit of fun with implicits

