class: center, middle

Types

byline[Will Billingsley, CC-BY]

class: bigquote

Do these makes sense...

1 plus 1 equals 2
red plus green equals yellow

1 plus red

class: bigquote

What about...

red plus rabbit

class: bigquote

What about...

red plus rabbit equals a red rabbit

class: bigquote

What about...

rabbit plus rabbit

class: bigquote

What about...

rabbit plus rabbit equals lots of baby rabbits

class: bigquote

Back to numbers

1 plus 1 equals 2
1 apple plus 1 orange

aplusb

class: bigquote, middle

Let's do something a little engineering

class: bigquote, middle

\(3 V \times (Mrac{12 V{6 \Omega} + 2 A) \)

class: bigquote, middle

\(3 V\times (\frac{12 VK6 \frac{VKA}}+2 A)\)

class: bigquote, middle

\(3 V \times (\frac{12 (V \times A){6 V} + 2 A)\)

class: bigquote, middle

\(3 V \times (\irac{12}6} A + 2 A) \)

class: bigquote, middle

\(3 V \times (\irac{12}{6} A + 2 A))

class: bigquote, middle

\(3 V \times (2 A +2 A)\)

class: bigquote, middle

\(3 V \times 4 A\)

class: bigquote, middle

\(3 \times 4 (V \times A))

class: bigquote, middle

\(12 (V \times A))

class: bigquote, middle

\(12W))
The message here...
e Just as we can simplify an equation of values, we can also simplify an equation of types

e Formally, this is called type theory. And it is closely related to automated theorem proving -- getting a
computer to prove the proposition that "this expression is the right type".

e In practice, there is a very close link between programs and proofs -- computer proofs look like
programs. Curry-Howard correspondance.

Different type systems

e When do we check the types?

o compile time? "Static typing"
o run time? "Dynamic typing"

e What do we do if we find the type is incompatible?

o throw an error? "Strong typing"
o fudge it somehow? "Weak typing"

Weak typing in JavaScript

What should these resolve to?

if (3 ~ "apples" == 4 "~ "oranges") { console.log("Yes, it does!") }
a == l!lla
17 + ("apples" != "oranges") + "foo"

A successful checker

o If I'm right, | want my code to run happily...

e If I'm wrong, | want to know I'm wrong now, not in production

e Fixing a bug in production costs 10 times as much as before I've released it

A successful checker

e Lets us express every program we want

e Stops us from expressing every program we obviously didn't want

e But isn't this verbose?

Map<Student, List<Course>> courseMap = new HashMap<Student, List<Course>>();

courseMap = {}

Type inference

o Let's keep the benefits of static typing (finding errors sooner, tool support, eg, auto-completion in IDES)
e But lose some of the verbosity.

e What type are these?

val a = 127

val b "Hello world"

val b

List("one", "two", "three").head

e Type inference -- so easy, you can do it already!

Type inference gotchas

e Sometimes it needs some help

def factorialStep(soFar:Long, thisNum:Int) = {
if (thisNum == 1) {
soFar
} else {
factorialStep(thisNum * soFar, thisNum - 1)
}

[error] /Users/wbilling/sourcecode/teaching/cosc250/firstscala/src/main/scala/

cosc250/firststeps/StepOne.scala:63: recursive method factorialStep needs resu
1t type

[error] factorialStep(thisNum * soFar, thisNum - 1)
[error] ~

Type inference gotchas
e Sometimes it needs some help

def factorialStep(soFar:Long, thisNum:Int):Long = {
if (thisNum == 1) {
soFar
} else {

factorialStep(thisNum * soFar, thisNum - 1)

Type inference gotchas

e Sometimes it can be too narrow

trait ContentItem {
def copyrightHolder = None
}

class Book(val title:String, val author:String) extends ContentItem {
override def copyrightHolder = author

}

Expression of type Some[String] does not conform to expected type None.type

Inheritance and types
e In one JAR we might have

public interface HasId {
String getId();

and in another JAR entirely we might have

public class Foo extends HasId {
String id;
@override

public String getId() {
return this.id;

But what about this

public class User {
public String getId() {
return this.id;

Subtypes represent an "is a" relationship

Isita HasId ?

Java uses Nominal subtyping for inheritance -- classes decare the contracts they conform to

Structural subtyping

object Demo {
type HasId = {

def getId:String

class Book(val title:String, val author:String) {
def getId = ""

val a: HasId = new Book("a", "b")

Ad-hoc polymorphism (typeclasses)

e Common in Haskell, fairly common in Scala.
Are these Openable?

e Acan
e A beer bottle
e Awine bottle (with a cork)

Ad-hoc polymorphism (typeclasses)

e Common in Haskell, fairly common in Scala.
Are these Openable?

e Acan -- only if I've got a can opener!
e Abeer bottle -- only if I've got a bottle opener!
e Awine bottle -- only if I've got a corkscrew!

Ad-hoc subtyping (typeclasses)

e A trait for the evidence

trait Openable[A] {
def open(a:A): String

e A wine bottle

class Wine(val name:String)

Ad-hoc subtyping (typeclasses)
¢ Afunction, needing something openable

def pour[A](item: A) (implicit ev: Openable[A]) = {
val contents = ev.open(item)
println(contents)
contents

o Let'scallit

val w = new Wine("Beaujolais") // we need a second parameter!

e Let's provide the corkscrew

public object Wine {
implicit object Corkscrew extends Openable[Wine] {

def open(w:Wine) = "Lovely + w.name

Syntactic sugar

¢ A function, needing something openable

def pour[A](item: A) (implicit ev: Openable[A]) = {
val contents = ev.open(item)
println(contents)

contents

def pour[A : Openable](item: A) = {
val opener = implicitly[Openable[A]]
val contents = opener.open(item)
println(contents)
contents

Parametrized Types

e |n Java, called Generics
e In Scala, you just saw them

o List[String]
o Openable[A]
o efc

Parametrized Types and Subtyping

e Ifa Student isa Person ,isa List[Student] a List[Person] ?

import scala.collection.mutable

trait Person
object Bob extends Person
class Student(n:String) extends Person

def addBob(seq:mutable.Buffer[Person]) = {
seq.append (Bob)

val a = mutable.Buffer(new Student("Fred"), new Student("Alice"))

addBob(a)

Covariance and Contravariance

e class Container[+A]

if Y isasubtypeof X , Container[Y] isasubtype of Container[X]
e class Container[-A]

if Y isasubtypeof X , Container[X] isasubtype of Container[Y]
e class Container[A]

Container[Y] and Container[X] are unrelated

e This is fairly common:

class Container[-A, +B]

A bit of fun with implicits

e Scala can do implicit conversions that let you decorate classes
o eg, locally make it seem like you've added methods to someone else's library
¢ |t also has a convention where
obj.callMyFunc (param)
can also be written
obj callMyFunc param

" n

e Let'smake "one" plus "one" equals "two"

